klane27
contestada

A rock is thrown upward with a velocity of 22 meters per second from the top of a 24 meter high cliff, and it misses the cliff on the way back down. When will the rock be 10 meters from ground level? Round your answer to two decimal places.

Respuesta :

t = 5.05 sec

Solution:

Given data:

Initial height [tex]\left(h_{0}\right)[/tex] = 24 meter

Initial velocity [tex]\left(v_{0}\right)[/tex] = 22 meter

Height of the rock (h) = 10 meter

To find when will the height of the rock be 10 metres:

General formula for the height(meter) of a projectile over time:

[tex]h(t)=-4.9 t^{2}+v_{0} t+h_{0}[/tex]

Substitute the given data in the above formula.

[tex]10=-4.9 t^{2}+22 t+24[/tex]

[tex]-4.9 t^{2}+22 t+24-10=0[/tex]

[tex]-4.9 t^{2}+22 t+14=0[/tex]

This equation looks like a quadratic equation.  

We can solve it by using the quadratic formula:

[tex]$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}[/tex]

Here a = –4.9, b = 22, c = 14

[tex]\begin{aligned}t &=\frac{-22 \pm \sqrt{(22)^{2}-4(-4.9)(14)}}{2(-4.9)} \\&=\frac{-22 \pm \sqrt{484+274.4}}{-9.8} \\&=\frac{-22 \pm \sqrt{758.4}}{-9.8} \\&=\frac{-22 \pm {27.54}}{-9.8} \\t &=\frac{-22-27.54}{-9.8}\ (\text {or})\ t=\frac{-22+27.54}{-9.8}\\t &=5.05\ (\text {or})\ t=-0.56\end{aligned}[/tex]

Time cannot be indicated in negative. So neglect t = –0.56.  

Therefore, t = 5.05 sec  

Hence after 5.05 sec the rock will be 10 meters from ground level.