Respuesta :

Answer:

2165.34 square yards

Step-by-step explanation:

It is as simple as finding the area of a circle. The given figure is a small sector of a circle with given angle '∅' and radius 'r'.

A circle completes [tex]360[/tex]° to complete its whole area.

So, we can find area of a sector of a circle by the formula =(∅/[tex]360[/tex]°)[tex]\pi r[/tex]²

To find area of semicircle we take as

area of semicircle= [tex]\frac{1}{2}\pi r[/tex]² or    ([tex]180[/tex]°/[tex]360[/tex]°)[tex]\pi r[/tex]²            : as semicircle forms ∠180°

              [tex]\pi =\frac{22}{7} = 3.14[/tex]

Similarly, for above figure given values are [tex]=150[/tex]° and [tex]r=40[/tex] yards

So, the area of the given sector is =   ([tex]155[/tex]°/[tex]360[/tex]°)[tex]*3.14*40*40[/tex]

                                                         =   [tex]0.431*3.14*40*40[/tex]

                        Area of the sector = 2165.34 square yards