contestada

Based on the information given, is the quadrilateral a
parallelogram? Explain.
O
O
The figure is a parallelogram because there are
two pairs of congruent sides.
The figure is a parallelogram because a diagonal
is bisected.
The figure is not necessarily a parallelogram
because the diagonals are not congruent.
The figure is not necessarily a parallelogram
because only one diagonal is bisected and only
one pair of sides is congruent.
Done
DDDDDDDDDDD)

Respuesta :

Answer:

1. The lenghts of the sides are not given. If you assume that the opposite sides have equal lenght, then the figure is a parallelogram because there are  two pairs of congruent sides.

2. The figure is a parallelogram because a diagonal  is bisected.

Step-by-step explanation:

The missing figure is attached.

For this exercise you must remember that:

1. A Quadrilateral is defined as a two-dimensinal closed figure that have for straight sides.

2. Parallelograms are Quadrilaterals.

3. Parallelograms have the following properties:

- Opposite sides are parallel .

- Opposite sides have equal lenght .

- Opposite angles are congruent.

- Consecutive angles are supplementary (which means that they add up to 180 degrees).

- The diagonals of a parallelogram bisect each other (which means that they are cut into two equal parts)  and divide it into two congruent triangles.

Then, in this case you can observe that the opposite sides of the Quadrilateral [tex]WXYZ[/tex] are parallel.

And you know that:

[tex]XN[/tex] is congruent to [tex]NZ[/tex]

[tex]NY[/tex] is congruent to  [tex]NW[/tex]

Therefore, the diagonals bisect each other.

The length of the sides are not given. However, if you assume that opposite sides have equal lenght, then you can conclude that their opposite sides are congruent.

Therefore, it is a parallelogram.

Ver imagen luisejr77

Answer:

D

Step-by-step explanation: