Respuesta :

Step-by-step explanation:

Since, line contains the point (-8, 11) and has a y intercept of 5.

Therefore, line passes through the points (-8, 11) and (0, 5)

Equation of line in two point form is given as:

[tex] \frac{y-y_1 }{y_1 - y_2 } = \frac{x-x_1 }{x_1 - x_2 } \\ \\ \therefore \: \frac{y-11 }{11 - 5 } = \frac{x-( - 11) }{ - 11 - 0 } \\ \\ \therefore \: \frac{y-11 }{6 } = \frac{x + 11 }{ - 11 } \\ \\ \therefore \: - 11(y-11 )=6 (x + 11) \\ \\ \therefore \: - 11y + 121=6 x + 66 \\ \\ \therefore \: 0=6 x + 11y + 66 - 121 \\ \\ \red{ \boxed{\therefore \: 6 x + 11y - 55 = 0}}[/tex]

Hence, 6x + 11y - 55 = 0 is the required equation of line.