Respuesta :

  • The length of the cross product of two vectors
  • The scalar triple product of the vectors a, b, and c
  • The volume of the parallelepiped determined by the vectors a, b, and c is the magnitude of their scalar triple product.

Explanation:

  • The length of the cross product of two vectors is | a [tex]\times[/tex] b | = |a| |b| sin θ
  • The length of the cross product of two vectors is equal to the area of the parallelogram determined by the two vectors (see figure below).
  • Anticommutativity:

                                      | a [tex]\times[/tex] b | = - | b [tex]\times[/tex] a |

  • Multiplication by scalars:

                                (ca) [tex]\times[/tex] b = c (a [tex]\times[/tex] b) = a [tex]\times[/tex] (cb)

  • Distributivity:  

                                  a [tex]\times[/tex] (b + c) = (a [tex]\times[/tex] b) + (a [tex]\times[/tex] c)

  • The scalar triple product of the vectors a, b, and c:

                                      a . (b [tex]\times[/tex] c) = (a [tex]\times[/tex] b) . c

  • The magnitude of the scalar triple product is the volume of the parallelepiped of the vectors a, b, and c.  
  • The vector triple product of the vectors a, b, and c is given as

                                 a [tex]\times[/tex] (b [tex]\times[/tex] c) = (a.c) b - (a.b) [tex]\times[/tex]c