Respuesta :

Step-by-step explanation:

[tex] {64}^{A} = \frac{1}{256^{B} } \\ \\ \therefore \: {2}^{6A} = \frac{1}{2^{8B} } \\ \\ \therefore \: {2}^{6A} = 2^{ - 8B} \\ \\ \therefore \: 6A = - 8B \\ \\ \therefore \: 6A + 8B = 0 \\ \\ \therefore \: 2(3A + 4B) =0 \\ \\ \therefore \: 3A + 4B =0[/tex]