contestada

Change the expression to a single square root, or its opposite:
a) 2√2
b)-7√3
c)(1/3)√18b
d)5√y
e)-6√2a
f)−.1√200c

Respuesta :

Answer:

a)[tex]2\sqrt{2}=\sqrt{8}[/tex]

b)[tex]-7\sqrt{3} =-\sqrt{147}[/tex]

c)[tex]\frac{1}{3} \sqrt{18b} =\sqrt{2.b}[/tex]

d)[tex]5\sqrt{y} =\sqrt{25y}[/tex]

e)[tex]-6\sqrt{2a} =-\sqrt{72a}[/tex]

f)[tex]-0.1\sqrt{200c}=- \sqrt{2c[/tex]

Step-by-step explanation:

a) [tex]2\sqrt{2}=( \sqrt{2} )^2.\sqrt{2}=(\sqrt{2})^3 = \sqrt{2^3} =\sqrt{8}[/tex]

b)[tex]-7\sqrt{3} =-(\sqrt{7} )^2\sqrt{3} =-\sqrt{7^2.3} =-\sqrt{147}[/tex]

c)[tex]\frac{1}{3} \sqrt{18b} =\frac{1}{3} \sqrt{9.2.b} =\frac{1}{3} \sqrt{3^2.2.b} =\frac{1}{3} \times 3\sqrt{2.b} =\sqrt{2.b}[/tex]

d)[tex]5\sqrt{y} =\sqrt{5^2} \sqrt{y}=\sqrt{25y}[/tex]

e)[tex]-6\sqrt{2a} =-\sqrt{6^2}\sqrt{2a} = -\sqrt{36.2a} =-\sqrt{72a}[/tex]

f)[tex]-0.1\sqrt{200c}=-\frac{1}{10} \sqrt{10^2.2c} =-\frac{1}{10}\times10 \sqrt{2c}=- \sqrt{2c[/tex]