Answer:
a)[tex]2\sqrt{2}=\sqrt{8}[/tex]
b)[tex]-7\sqrt{3} =-\sqrt{147}[/tex]
c)[tex]\frac{1}{3} \sqrt{18b} =\sqrt{2.b}[/tex]
d)[tex]5\sqrt{y} =\sqrt{25y}[/tex]
e)[tex]-6\sqrt{2a} =-\sqrt{72a}[/tex]
f)[tex]-0.1\sqrt{200c}=- \sqrt{2c[/tex]
Step-by-step explanation:
a) [tex]2\sqrt{2}=( \sqrt{2} )^2.\sqrt{2}=(\sqrt{2})^3 = \sqrt{2^3} =\sqrt{8}[/tex]
b)[tex]-7\sqrt{3} =-(\sqrt{7} )^2\sqrt{3} =-\sqrt{7^2.3} =-\sqrt{147}[/tex]
c)[tex]\frac{1}{3} \sqrt{18b} =\frac{1}{3} \sqrt{9.2.b} =\frac{1}{3} \sqrt{3^2.2.b} =\frac{1}{3} \times 3\sqrt{2.b} =\sqrt{2.b}[/tex]
d)[tex]5\sqrt{y} =\sqrt{5^2} \sqrt{y}=\sqrt{25y}[/tex]
e)[tex]-6\sqrt{2a} =-\sqrt{6^2}\sqrt{2a} = -\sqrt{36.2a} =-\sqrt{72a}[/tex]
f)[tex]-0.1\sqrt{200c}=-\frac{1}{10} \sqrt{10^2.2c} =-\frac{1}{10}\times10 \sqrt{2c}=- \sqrt{2c[/tex]