jonesn7
contestada

Given the following right triangle, find cose, sine, tane sececsce, and cote. Do not
approximate: Find exact answers. Show all of your work and explain steps as necessary.​

Given the following right triangle find cose sine tane sececsce and cote Do notapproximate Find exact answers Show all of your work and explain steps as necessa class=

Respuesta :

gmany

Step-by-step explanation:

Use the Pythagorean theorem:

[tex]leg^2+leg^2=hypotenuse^2[/tex]

We have

[tex]leg=4,\ hypotenuse=10[/tex]

Substitute:

[tex]4^2+leg^2=10^2[/tex]

[tex]16+leg^2=100[/tex]             subtract 16 from both sides

[tex]leg^2=84\to leg=\sqrt{84}\\\\leg=\sqrt{(4)(21)}\\\\leg=\sqrt4\cdot\sqrt{21}\\\\leg=2\sqrt{21}[/tex]

[tex]sine=\dfrac{opposite}{hypotenuse}\\\\cosine=\dfrac{adjacent}{hypotenuse}\\\\tangent=\dfrac{opposite}{adjacent}\\\\cotangent=\dfrac{adjacent}{opposite}\\\\secant=\dfrac{hypotenuse}{adjacent}\\\\cosecant=\dfrac{hypotenuse}{opposite}[/tex]

Substitute:

[tex]hypotenuse=10,\ opposite=4,\ adjacent=2\sqrt{21}[/tex]

[tex]\sin\theta=\dfrac{4}{10}=\dfrac{2}{5}\\\\\cos\theta=\dfrac{2\sqrt{21}}{10}=\dfrac{\sqrt{21}}{5}\\\\\tan\theta=\dfrac{4}{2\sqrt{21}}=\dfrac{2}{\sqrt{21}}\cdot\dfrac{\sqrt{21}}{\sqrt{21}}=\dfrac{2\sqrt{21}}{21}\\\\\cot\theta=\dfrac{2\sqrt{21}}{4}=\dfrac{\sqrt{21}}{2}\\\\\sec\theta=\dfrac{10}{2\sqrt{21}}=\dfrac{5}{\sqrt{21}}\cdot\dfrac{\sqrt{21}}{\sqrt{21}}=\dfrac{5\sqrt{21}}{21}\\\\\csc\theta=\dfrac{10}{4}=\dfrac{5}{2}[/tex]