Find tan0, cos0, and csc0, where 0 is the angle shown in the figure. Give exact values, not decimal approximations. BRANLIEST!!

Answer:
see explanation
Step-by-step explanation:
We require to find the third side of the triangle.
Using Pythagoras' identity
The square on the hypotenuse is equal to the sum of the squares on the other 2 sides.
let x represent the third side, then
x² + 15² = 17², that is
x² + 225 = 289 ( subtract 225 from both sides )
x² = 64 ( take the square root of both sides )
x = [tex]\sqrt{64}[/tex] = 8
Thus
tanΘ = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{15}{8}[/tex]
cosΘ = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{8}{17}[/tex]
sinΘ = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{15}{17}[/tex]
cscΘ = [tex]\frac{1}{sin0}[/tex] = [tex]\frac{1}{\frac{15}{17} }[/tex] = [tex]\frac{17}{15}[/tex]