Respuesta :

Answer: 644,800

Step-by-step explanation:

This can also be solved using the terms of Arithmetic Progressions.

Let the 13 years be number of terms of the sequences (n)

Therefore ;

T₁₃              = a + ( n - 1 )d , where a = 310,000 and d = 9% of 310,000

9% of 310,000 = 9/100 x 310,000

                        = 27,900

so the common difference (d)

                     d = 27,900

Now substitute for the values  in the formula above and calculate

T₁₃              = 310,000 + ( 13 - 1 ) x 27,900

                  = 310,000 + 12 x 27,900

                  = 310,000 + 334,800

                  = 644,800.

The population after 13 years = 644,800.