Respuesta :

Answer:

Therefore,

[tex]\cos \theta=-3[/tex]

Step-by-step explanation:

Unit Circle:

In mathematics, a unit circle is a circle with a unit radius. Frequently, especially in trigonometry, the unit circle is the circle of radius one centered at the origin (0, 0) in coordinate System.

So the coordinate of point P on the circle is given as,

[tex]P(x,y)=(r\cos \theta,r\sin \theta)[/tex]

Here,

Given:

P(-3,2)

So if Radius is one unit i.e r = 1 then on Comparing we get

[tex]P(-3,2)=(\cos \theta,\sin \theta)[/tex]

∴[tex]\cos \theta=-3[/tex]

Therefore,

[tex]\cos \theta=-3[/tex]

Ver imagen inchu420

Answer:

-3/5

Step-by-step explanation:

I took the test,

for work, look up the question on Chegg.