Respuesta :

Given equation:

[tex]$f(x)=-8\left(\frac{5}{2}\right)^{x}[/tex]

Let y = f(x)

To complete the given table let us find the value of y.

Find the value of y for the corresponding x given.

Substitute x = –3 in f(x).

[tex]$f(x)=-8\left(\frac{5}{2}\right)^{-3}[/tex]

      [tex]$=-8\left(\frac{8}{125}\right)[/tex]

[tex]$f(x)=\frac{-64}{125}[/tex]

Substitute x = –1 in f(x).

[tex]$f(x)=-8\left(\frac{5}{2}\right)^{-1}[/tex]

       [tex]$=-8\left(\frac{2}{5}\right)[/tex]

[tex]$f(x)=\frac{-16}{5}[/tex]

Substitute x = 0 in f(x).

[tex]$f(x)=-8\left(\frac{5}{2}\right)^{0}[/tex]

       [tex]$=-8(1)[/tex]

[tex]$f(x)=-8[/tex]

Substitute x = 2 in f(x).

[tex]$f(x)=-8\left(\frac{5}{2}\right)^{2}[/tex]

       [tex]$=-8\left(\frac{25}{4}\right)[/tex]

[tex]$f(x)=-50[/tex]

Now, substitute the values in the given table.

The image of the table is given below.

Ver imagen shilpa85475