Respuesta :

Answer:

[tex]\left(\left(\frac{27}{53}\right)-6\right)+\left(53\left(-\left(2^2\right)\right)\right)=-\frac{11527}{53}\quad \left(\mathrm{Decimal:\quad }\:-217.49056\dots \right)[/tex]

Step-by-step explanation:

Considering the expression

27 divided by 53 minus 6 plus 53 times -2 squared

Which can be written as

[tex]\left(\left(\frac{27}{53}\right)-6\right)+\left(53\cdot \left(-\left(2^2\right)\right)\right)[/tex]

So, solving the expression

[tex]\left(\left(\frac{27}{53}\right)-6\right)+\left(53\cdot \left(-\left(2^2\right)\right)\right)[/tex]

[tex]\mathrm{Remove\:parentheses}:\quad \left(a\right)=a[/tex]

[tex]=\frac{27}{53}-6-53\cdot \:2^2[/tex]

[tex]\mathrm{Convert\:element\:to\:fraction}:\quad \:6=\frac{6\cdot \:53}{53}[/tex]

[tex]=-\frac{6\cdot \:53}{53}+\frac{27}{53}[/tex]

[tex]\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}[/tex]

[tex]=\frac{-6\cdot \:53+27}{53}[/tex]

[tex]=\frac{-291}{53}[/tex]       ∵ [tex]-6\cdot \:53+27=-291[/tex]

[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}[/tex]

[tex]=-2^2\cdot \:53-\frac{291}{53}[/tex]

[tex]=-212-\frac{291}{53}[/tex]    ∵ [tex]53\cdot \:2^2=212[/tex]

[tex]\mathrm{Convert\:element\:to\:fraction}:\quad \:212=\frac{212\cdot \:53}{53}[/tex]

[tex]=-\frac{212\cdot \:53}{53}-\frac{291}{53}[/tex]

[tex]\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}[/tex]

[tex]=\frac{-212\cdot \:53-291}{53}[/tex]

[tex]=\frac{-11527}{53}[/tex]    ∵  [tex]-212\cdot \:53-291=-11527[/tex]

[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}[/tex]

[tex]=-\frac{11527}{53}[/tex]

Therefore,

[tex]\left(\left(\frac{27}{53}\right)-6\right)+\left(53\left(-\left(2^2\right)\right)\right)=-\frac{11527}{53}\quad \left(\mathrm{Decimal:\quad }\:-217.49056\dots \right)[/tex]

Keywords: algebraic expression

Learn more about solving algebraic expression from brainly.com/question/4687406

#learnwithBrainly