Respuesta :
Answer:
[tex]4x^3-12x^2-2x[/tex]
Step-by-step explanation:
Given:
[tex]f(x)= 12x^5-36x^4-6x^3[/tex]
[tex]g(x)=3x^2[/tex]
We need to find [tex]\frac{f(x)}{g(x)}[/tex] .
Solution:
We have attached the division for your reference.
Step 1:
Now here Dividend is [tex]12x^5-36x^4-6x^3[/tex] and Divisor is [tex]3x^2[/tex] so we will multiply the Divisor with [tex]4x^3[/tex] we will get the answer as [tex]12x^5[/tex] so from dividend [tex]12x^5[/tex] will get subtracted and the remainder will be [tex]-36x^4-6x^3[/tex] and the Quotient will be [tex]4x^3[/tex].
Step 2:
Now the Dividend is [tex]-36x^4-6x^3[/tex] and Divisor is [tex]3x^2[/tex] so we will multiply the Divisor with [tex]-12x^2[/tex] we will get the answer as [tex]-36x^2[/tex] so from dividend [tex]-36x^2[/tex]will get subtracted and the remainder will be [tex]-6x^3[/tex] and the Quotient will be [tex]4x^3-12x^2[/tex]
Step 3:
Now the Dividend is [tex]-6x^3[/tex] and Divisor is [tex]3x^2[/tex] so we will multiply the Divisor with [tex]-2x[/tex] we will get the answer as so [tex]-6x^3[/tex] from dividend [tex]-36x^2[/tex]will get subtracted and the remainder will be 0 and the Quotient will be [tex]4x^3-12x^2-2x[/tex]
Hence [tex]\frac{f(x)}{g(x)} =4x^3-12x^2-2x[/tex].

Answer: 4x^3-12x^2-2x
Step-by-step explanation:
Given:
Step-by-step explanation: