1. Simplify. ((4x^4 y^5 )^4)/((4x^2 y^3 )^3 ) Show your work for each step.
Answer:



2. Solve for x. 〖(27)〗^(2y-2)=(3)^(2y+15)Show your work for each step.
Answer:

1 Simplify 4x4 y5 44x2 y3 3 Show your work for each step Answer 2 Solve for x 272y232y15Show your work for each step Answer class=

Respuesta :

Answer:

1. [tex]4x^{10}y^{11}[/tex]

2.  [tex]y=5.25[/tex]

Step-by-step explanation:

Question 1.

Given:

[tex]\frac{(4x^4y^5)^4}{(4x^2y^3)^3}[/tex]

We need to Simplify given expression we get;

Solution:

Now we know that;

By Using Law of Indices which states;

[tex](x^m)^n=x^{m.n}[/tex]

So we get:

[tex]\frac{4^4x^{4\times4}y^{5\times4}}{4^3x^{2\times3}y^{3\times3}}\\\\\frac{4^4x^{16}y^{20}}{4^3x^{6}y^{9}}[/tex]

Now Again By Law of Indices we get;

[tex]\frac{x^a}{x^b}=x^{a-b}[/tex]

So we get:

[tex]=4^{(4-3)}x^{(16-6)}y^{(20-9)}\\\\=4x^{10}y^{11}[/tex]

Hence Simplified expression is  [tex]4x^{10}y^{11}[/tex].

Question 2.

Given:

[tex](27)^{(2y-2)}=(3)^{(2y+15)}[/tex]

We need to solve for 'y'.

Solution:

To find 'y' we need to first make the base same.

Now we know that;

[tex]27 = 3\times3\times3 = 3^3[/tex]

So we can say that:

[tex](3)^{3(2y-2)}=(3)^{2y+15}[/tex]

Now Applying Distributive property we get;

[tex](3)^{6y-6}=(3)^{2y+15}[/tex]

Now we can say that;

When an expression has equal bases then their exponent are said to equal too.

from above we get;

[tex]6y-6=2y+15[/tex]

Combing like terms we get;

[tex]6y-2y=15+6\\\\4y=21[/tex]

Dividing both side by 2 we get;

[tex]\frac{4y}{4}=\frac{21}{4}\\\\y=5.25[/tex]

Hence The Value of y is 5.25.