Anjeli writes the equation (a+b)2=c2+4(12ab) to begin a proof of the Pythagorean theorem.

Use the drop-down menus to explain why this is a true equation.

Anjeli writes the equation ab2c2412ab to begin a proof of the Pythagorean theorem Use the dropdown menus to explain why this is a true equation class=

Respuesta :

Answer:

Therefore Anjeli is correct and

[tex](a+b)^{2}=c^{2}+4(\frac{1}{2}ab)[/tex]  is TRUE.

Step-by-step explanation:

Given:

Label on triangle as ΔABC right angle at C such that

AB = c  .....(Hypotenuse)

AC = b  ....(Longer leg)

BC = a  ....(Shorter leg)

To Prove:

[tex](a+b)^{2}=c^{2}+4(\frac{1}{2}ab)[/tex]

Proof:

We know, in Right angle triangle ABC by Pythagoras theorem we get,

[tex](\textrm{Hypotenuse})^{2} = (\textrm{Shorter leg})^{2}+(\textrm{Longer leg})^{2}[/tex]

Substituting the values we get

[tex]AB^{2}=BC^{2}+AC^{2}\\\\c^{2}=a^{2}+b^{2}[/tex]    ...............( 1 )

Now the Left hand side of what Anjeli wrote is

Left hand side = (a+b)²

 Using identity (A+B)² = A²+ B² + 2AB we get

Left hand side = a²+ b² + 2ab

From ( 1 ) we have [tex]c^{2}=a^{2}+b^{2}[/tex]

Substituting we get

Left hand side = c² + 2ab        ...........................( 2 )

Now,

Right hand side =[tex]c^{2}+4(\frac{1}{2}ab)[/tex]

Dividing 4 by 2 we get  2, hence

Right hand side =[tex]c^{2}+2ab[/tex]  .........................( 3 )

Therefore,

Left hand side = Right hand side          From  ( 2 ) and ( 3 )

[tex](a+b)^{2}=c^{2}+4(\frac{1}{2}ab)[/tex]      ..True

Therefore Anjeli is correct and

[tex](a+b)^{2}=c^{2}+4(\frac{1}{2}ab)[/tex]  is TRUE.

Ver imagen inchu420

Answer:a+b  c   1/2ab

Step-by-step explanation:

Otras preguntas