Answer:
The consecutive odd integers are (15, 17, 19) or (-17, -15, -13).
Step-by-step explanation:
Let the three consecutive odd integers be: [tex]x-2,x\ and \ x+2[/tex]
The condition given is:
[tex]4[x-2+x+x+2]=3x(x+2)-765[/tex]
Solve this for x as follows:
[tex]4[x-2+x+x+2]=3x(x+2)-765\\4\times 3x=3x^{2}+6x-765\\3x^{2}-6x-765=0\\x^{2}-2x-255=0\\x^{2}-17x+15x-255=0\\x(x-17)+15(x-17)=0\\(x-17)(x+15)=0[/tex]
The odd numbers are:
[tex]x-2=17-2=15\\x=17\\x+2=17+2=19[/tex]
The odd numbers are:
[tex]x-2=-15-2=-17\\x=-15\\x+2=-15+2=-13[/tex]
Thus, the consecutive odd integers are (15, 17, 19) or (-17, -15, -13).