Respuesta :

Option D:

SAS

Solution:

Given [tex]\overline{R S} \ || \ \overline{P Q}[/tex]

To prove that [tex]\triangle P Q R \cong \triangle R S P[/tex]

In ΔPQR and ΔRSP,

[tex]\overline{R S}\cong\overline{P Q}[/tex] (given side)

[tex]\overline{R S} \ || \ \overline{P Q}[/tex] (given)

By alternative interior angle theorem,

∠PRS ≅ ∠QPR (angle)

By reflexive property of congruence,

[tex]\overline{PR } \cong \overline{PR}[/tex] (side)

Hence by Side-Angle-Side (SAS) congruence rule,

ΔPQR ≅ ΔRSP

Option D is the correct answer.

Hence the missing reason is SAS.