The velocity of a particle moving along the x axis is given by vx = a t − b t3 for t > 0 , where a = 26 m/s 2 , b = 1.4 m/s 4 , and t is in s. What is the acceleration of the particle when it achieves its maximum displacement in the positive x direction?

Respuesta :

Answer:

-52 m/s²

Explanation:

[tex]a=26 m/s^2[/tex]

[tex]b=1.4 m/s^4[/tex]

Velocity is given by

[tex]v=at-bt^3[/tex]

Acceleration is given by

[tex]a_x=\dfrac{dv}{dt}\\\Rightarrow a_x=\dfrac{d}{dt}at-bt^3\\\Rightarrow a_x=a-3bt^2[/tex]

For maximum displacement we have to equate v = 0

[tex]0=at-bt^3\\\Rightarrow t=\sqrt{\dfrac{a}{b}}\\\Rightarrow t=\sqrt{\dfrac{26}{1.4}[/tex]

Substituting in the acceleration equation

[tex]a_x=26-3\times 1.4\times \sqrt{\dfrac{26}{1.4}}^2\\\Rightarrow a_x=26-3\times 1.4\times \dfrac{26}{1.4}\\\Rightarrow a_x=-52\ m/s^2[/tex]

The acceleration when maximum displacement is achieved is -52 m/s²