The ideal gas heat capacity of nitrogen varies with temperature. It is given by:
Cp = 29.42 - (2.170*10^-3 ) T + (0.0582*10^-5 ) T2 + (1.305*10^-8 ) T3 – (0.823*10^-11) T4
T in K and Cp in Joule/(mole-K). Assuming that N2 is an ideal gas:
A) How much internal energy (per mole) must be added to nitrogen to increase its temperature from 450 to 500 K.B) Repeat part A for an initial temperature of 273 K and final temperature of 1073 K.

Respuesta :

Answer:

A)  1059 J/mol

B)  17,920 J/mol

Explanation:

Given that:

Cp = 29.42 - (2.170*10^-3 ) T + (0.0582*10^-5 ) T2 + (1.305*10^-8 ) T3 – (0.823*10^-11) T4

R (constant) = 8.314

We know that:

[tex]C_p=C_v+R[/tex]

We can determine [tex]C_v[/tex] from above if we make [tex]C_v[/tex] the subject of the formula as:

[tex]C_v[/tex][tex]=C_p-R[/tex]

[tex]C_V = 29.42-(2.7*10^{-3})T+(5.82*10^{-7})T2-(1.305*10^{-8})T3-(8.23*10^{-12})T4-8.314[/tex]

[tex]C_V = 21.106-(2.7*10^{-3})T+(5.82*10^{-7})T2-(1.305*10^{-8})T3-(8.23*10^{-12})T4[/tex]

A).

The formula for calculating change in internal energy is given as:

[tex]dU=C_vdT[/tex]

If we integrate above data into the equation; it implies that:

[tex]U2-U1=\int\limits^{500}_{450}(21.106-(2.7*10^{-3})T+(5.82*10^{-7})T2-(1.305*10^{-8})T3-(8.23*10^{-12})T4\,) du[/tex]

[tex]U2-U1=\int\limits^{500}_{450}(21.106-(2.7*10^{-3})T/1+(5.82*10^{-7})T2/2-(1.305*10^{-8})T3/3-(8.23*10^{-12})T4/4\,)[/tex]

[tex]U2-U1= 1059J/mol[/tex]

Hence, the internal energy that must be added to nitrogen in order to increase its temperature from 450 to 500 K = 1059 J/mol.

B).

If we repeat part A for an initial temperature of 273 K and final temperature of 1073 K.

then T = 273 K & T2 = 1073 K

[tex]U2-U1=\int\limits^{500}_{450}(21.106-(2.7*10^{-3})T/1+(5.82*10^{-7})T2/2-(1.305*10^{-8})T3/3-(8.23*10^{-12})T4/4\,)[/tex]

[tex]U2-U1=\int\limits^{500}_{450}(21.106-(2.7*10^{-3})273/1+(5.82*10^{-7})1073/2-(1.305*10^{-8})T3/3-(8.23*10^{-12})T4/4\,)[/tex]

[tex]U2-U1= 17,920 J/mol[/tex]