Respuesta :
Answer:
A) 1059 J/mol
B) 17,920 J/mol
Explanation:
Given that:
Cp = 29.42 - (2.170*10^-3 ) T + (0.0582*10^-5 ) T2 + (1.305*10^-8 ) T3 – (0.823*10^-11) T4
R (constant) = 8.314
We know that:
[tex]C_p=C_v+R[/tex]
We can determine [tex]C_v[/tex] from above if we make [tex]C_v[/tex] the subject of the formula as:
[tex]C_v[/tex][tex]=C_p-R[/tex]
[tex]C_V = 29.42-(2.7*10^{-3})T+(5.82*10^{-7})T2-(1.305*10^{-8})T3-(8.23*10^{-12})T4-8.314[/tex]
[tex]C_V = 21.106-(2.7*10^{-3})T+(5.82*10^{-7})T2-(1.305*10^{-8})T3-(8.23*10^{-12})T4[/tex]
A).
The formula for calculating change in internal energy is given as:
[tex]dU=C_vdT[/tex]
If we integrate above data into the equation; it implies that:
[tex]U2-U1=\int\limits^{500}_{450}(21.106-(2.7*10^{-3})T+(5.82*10^{-7})T2-(1.305*10^{-8})T3-(8.23*10^{-12})T4\,) du[/tex]
[tex]U2-U1=\int\limits^{500}_{450}(21.106-(2.7*10^{-3})T/1+(5.82*10^{-7})T2/2-(1.305*10^{-8})T3/3-(8.23*10^{-12})T4/4\,)[/tex]
[tex]U2-U1= 1059J/mol[/tex]
Hence, the internal energy that must be added to nitrogen in order to increase its temperature from 450 to 500 K = 1059 J/mol.
B).
If we repeat part A for an initial temperature of 273 K and final temperature of 1073 K.
then T = 273 K & T2 = 1073 K
∴
[tex]U2-U1=\int\limits^{500}_{450}(21.106-(2.7*10^{-3})T/1+(5.82*10^{-7})T2/2-(1.305*10^{-8})T3/3-(8.23*10^{-12})T4/4\,)[/tex]
[tex]U2-U1=\int\limits^{500}_{450}(21.106-(2.7*10^{-3})273/1+(5.82*10^{-7})1073/2-(1.305*10^{-8})T3/3-(8.23*10^{-12})T4/4\,)[/tex]
[tex]U2-U1= 17,920 J/mol[/tex]