The solution is [tex]2t^{2} -4t+14[/tex]
Explanation:
The expression is [tex]m(t)=2(t-1)^{2}+12[/tex]
Squaring the binomial using the formula, [tex](a-b)^{2}=a^{2}-2 a b+b^{2}[/tex], we get,
[tex]2(t^{2} -2t+1)+12[/tex]
Multiplying 2 within the bracket, we have,
[tex]2t^{2} -4t+2+12[/tex]
Adding the constant term,
[tex]2t^{2} -4t+14[/tex]
Thus, the solution of the expression is [tex]2t^{2} -4t+14[/tex]