A boat tour guide expects his tour to travel at a rate of x mph on the first leg of the trip. On the return route, the boat travels against the current, decreasing the boat's rate by 10 mph. The group needs to travel an average of at least 24 mph. The inequality represents the possible rates. Solve the inequality. 1/x + 1/x-10 >= 2/24 Which intervals are included in the solution? Check all that apply.

Respuesta :

The intervals included in solution are:

[tex]\frac{1}{x} + \frac{1}{x}-10\ge \frac{2}{24}\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:0<x\le \frac{24}{121}\:\\ \\\:\mathrm{Decimal:}&\:0<x\le \:0.19834\dots \\\\ \:\mathrm{Interval\:Notation:}&\:(0,\:\frac{24}{121}]\end{bmatrix}[/tex]

Solution:

Given that,

A boat tour guide expects his tour to travel at a rate of x mph on the first leg of the trip

On the return route, the boat travels against the current, decreasing the boat's rate by 10 mph

The group needs to travel an average of at least 24 mph

Given inequality is:

[tex]\frac{1}{x} + \frac{1}{x} - 10\geq \frac{2}{24}[/tex]

We have to solve the inequality

[tex]\frac{1}{x} + \frac{1}{x} - 10\geq \frac{2}{24}\\\\\frac{2}{x} - 10\geq \frac{2}{24}[/tex]

[tex]\mathrm{Subtract\:}\frac{2}{24}\mathrm{\:from\:both\:sides}\\\\\frac{2}{x}-10-\frac{2}{24}\ge \frac{2}{24}-\frac{2}{24}\\\\Simplify\\\\\frac{2}{x}-10-\frac{2}{24}\ge \:0[/tex]

[tex]\frac{2}{x}-\frac{10}{1}-\frac{2}{24} \geq 0\\\\\frac{ 2 \times 24}{x \times 24} -\frac{10 \times 24}{1 \times 24} - \frac{2 \times x }{24 \times x}\geq 0\\\\\frac{48}{24x}-\frac{240x}{24x}-\frac{2x}{24x}\geq 0\\\\Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions\\\\\frac{48-240x-2x}{24x}\geq 0\\\\Add\:similar\:elements\\\\\frac{48-242x}{24x}\ge \:0[/tex]

[tex]\mathrm{Multiply\:both\:sides\:by\:}24\\\\\frac{24\left(48-242x\right)}{24x}\ge \:0\cdot \:24\\\\Simplify\\\\\frac{48-242x}{x}\ge \:0\\\\Factor\ common\ terms\\\\\frac{-2\left(121x-24\right)}{x}\ge \:0\\\\\mathrm{Multiply\:both\:sides\:by\:}-1\mathrm{\:\left(reverse\:the\:inequality\right)}[/tex]

When we multiply or divide both sides by negative number, then we must flip the inequality sign

[tex]\frac{\left(-2\left(121x-24\right)\right)\left(-1\right)}{x}\le \:0\cdot \left(-1\right)\\\\\frac{2\left(121x-24\right)}{x}\le \:0\\\\\mathrm{Divide\:both\:sides\:by\:}2\\\\\frac{\frac{2\left(121x-24\right)}{x}}{2}\le \frac{0}{2}\\\\Simplify\\\\\frac{121x-24}{x}\le \:0[/tex]

[tex]\mathrm{Find\:the\:signs\:of\:the\:factors\:of\:}\frac{121x-24}{x}\\[/tex]

This is attached as figure below

From the attached table,

[tex]\mathrm{Identify\:the\:intervals\:that\:satisfy\:the\:required\:condition:}\:\le \:\:0\\\\0<x<\frac{24}{121}\quad \mathrm{or}\quad \:x=\frac{24}{121}\\\\Merge\:Overlapping\:Intervals\\\\0<x\le \frac{24}{121}[/tex]

Therefore, solution set is given as:

[tex]\frac{1}{x} + \frac{1}{x}-10\ge \frac{2}{24}\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:0<x\le \frac{24}{121}\:\\ \\\:\mathrm{Decimal:}&\:0<x\le \:0.19834\dots \\\\ \:\mathrm{Interval\:Notation:}&\:(0,\:\frac{24}{121}]\end{bmatrix}[/tex]

Ver imagen iwillanswer

Answer:

The correct answer is

Step-by-step explanation:

1st one (0,4] and (10,30]

and the 2nd question is (10,30] only