The mass of a string is 2.00 10-3 kg, and it is stretched so the tension in it is 225 N. A transverse wave traveling on this string has a frequency of 260 Hz and a wavelength of 0.60 m. What is the length of the string?

Respuesta :

Answer:

0.21632 m

Explanation:

f = Frequency = 260 Hz

[tex]\lambda[/tex] = Wavelength = 0.6 m

v = Velocity = [tex]f\lambda[/tex]

T = Tension = 225 N

m = Mass of string = [tex]2\times 10^{-3}\ kg[/tex]

L = Length of string

Velocity of wave is given by

[tex]v=\sqrt{\dfrac{T}{m/L}}\\\Rightarrow L=\dfrac{v^2m}{T}\\\Rightarrow L=\dfrac{(260\times 0.6)^2\times 2\times 10^{-3}}{225}\\\Rightarrow L=0.21632\ m[/tex]

The length of the string is 0.21632 m