List the probability value for each possibility in the binomial experiment calculated at the beginning of this lab, which was calculated with the probability of a success being ½. (Complete sentence not necessary; round your answers to three decimal places) (8 points) P(x=0) P(x=1) P(x=2) P(x=3) P(x=4) P(x=5) P(x=6) P(x=7) P(x=8) P(x=9) P(x=10)

Respuesta :

Answer:

P (X = 0) = 0.001        P (X = 4) = 0.205        P (X = 8) = 0.044

P (X = 1) = 0.010         P (X = 5) = 0.246        P (X = 9) = 0.010

P (X = 2) = 0.044        P (X = 6) = 0.205       P (X = 10) = 0.001

P (X = 3) = 0.117          P (X = 7) = 0.117

Step-by-step explanation:

In case of a Binomial experiment there are n repeated trials and each trial has only two outcomes: Success or Failure. The probability of success is denoted by p and the probability of failure is (1 - p).

The binomial experiment follows a discrete probability distribution with PDF :

[tex]P(X =x)={n\choose x}p^{x}(1-p^{n-x}[/tex];x = 0, 1, 2, 3...

Given: n = 10 and p = 0.50

(1)

The value of P (X = 0) is:

[tex]P(X =0)={10\choose 0}(0.50)^{0}(1-0.50)^{10-0}=1\times 1\times 0.00097\approx0.001[/tex]

(2)

The value of P (X = 1) is:

[tex]P(X =1)={10\choose 1}(0.50)^{1}(1-0.50)^{10-1}=10\times 0.50\times 0.00195\approx0.010[/tex]

(3)

The value of P (X = 2) is:

[tex]P(X =2)={10\choose 2}(0.50)^{2}(1-0.50)^{10-2}=45\times 0.25\times 0.00391\approx0.044[/tex]

(4)

The value of P (X = 3) is:

[tex]P(X =3)={10\choose 3}(0.50)^{3}(1-0.50)^{10-3}=120\times 0.125\times 0.007813\approx0.117[/tex]

(5)

The value of P (X = 4) is:

[tex]P(X =4)={10\choose 4}(0.50)^{4}(1-0.50)^{10-4}=210\times 0.0625\times 0.015625\approx0.205[/tex]

(6)

The value of P (X = 5) is:

[tex]P(X =5)={10\choose 5}(0.50)^{5}(1-0.50)^{10-5}=252\times 0.03125\times 0.03125\approx0.246[/tex]

(7)

The value of P (X = 6) is:

[tex]P(X =6)={10\choose 6}(0.50)^{6}(1-0.50)^{10-6}=210\times 0.015625\times 0.0625\approx0.205[/tex]

(8)

The value of P (X = 7) is:

[tex]P(X =7)={10\choose 7}(0.50)^{7}(1-0.50)^{10-7}=120\times 0.007813\times 0.125\approx0.117[/tex]

(9)

The value of P (X = 8) is:

[tex]P(X =8)={10\choose 8}(0.50)^{8}(1-0.50)^{10-8}=45\times 0.00391\times 0.25\approx0.044[/tex]

(10)

The value of P (X = 9) is:

[tex]P(X =9)={10\choose 9}(0.50)^{9}(1-0.50)^{10-9}=10\times 0.00195\times 0.50\approx0.010[/tex]

(11)

The value of P (X = 10) is:

[tex]P(X =10)={10\choose 10}(0.50)^{10}(1-0.50)^{10-10}=1\times 0.00097\times 1\approx0.001[/tex]