Respuesta :

Answer:

1. Equilibrium solution: y= -3

2. Equilibrium solution y= ±1.414

Step-by-step explanation:

Thinking process:

The equilibrium solution can only be derived when [tex]\frac{dy}{dt} = 0[/tex]

1. Let's look at the first equation:

[tex]\frac{dy}{dt} = \frac{(y+3)}{(1-y)}[/tex]

equating [tex]\frac{dy}{dt} = 0[/tex] to the expression [tex]\frac{(y+3)}{(1-y)}[/tex] gives

y + 3 = 0

     y = -3

Therefore, the equilibrium solution occurs at y = -3

2. Let's look at the second solution:

[tex]\frac{dy}{dy} = \frac{(t^{2}- 1) (y^{2}-2) }{y^{2}-4 }[/tex]

dividing each side by (t²-1) gives

1/(t²-1)[tex]\frac{dy}{dt}[/tex] = (y²-2)/ (y²-4)

factorizing the right hand side gives:

at equilibrium:  [tex]\frac{dy}{dt} = 0[/tex], then

y² - 2 = 0

solving for y gives y = ±√2

                                 = ±1.414