Answer:
Therefore,
The current in the wire is 15.77 Ampere.
Explanation:
Given:
Length = l = 1.1 meter
V = 1.35 Volt
[tex]Area = 0.72\ mm^{2}=\dfrac{0.72}{1000000}=0.72\times 10^{-6}\ m^{3}[/tex]
To Find:
Current, I =?
Solution:
Resistance for 1.1-m long tungsten wire with a cross sectional area, if it is connected across a 1.35 V potential difference given as
[tex]R=\dfrac{\rho\times l}{A}[/tex]
Where,
R = Resistance
l = length
A = Area of cross section
[tex]\rho=Resistivity=5.6\times 10^{-8}\ ohm-meter[/tex]
Substituting the values we get
[tex]R=\dfrac{5.6\times 10^{-8}\times 1.1}{0.72\times 10^{-6}}=8.56\times 10^{-2}\ ohm[/tex]
Now by Ohm's Law,
[tex]I=\dfrac{V}{R}[/tex]
Substituting the values we get
[tex]I=\dfrac{1.35}{8.56\times 10^{-2}}=15.77\ Ampere[/tex]
Therefore,
The current in the wire is 15.77 Ampere.