Respuesta :

[tex]$\log _{2}\left(\frac{1}{16}\right)=-4[/tex]

Solution:

Given expression:

[tex]$\log _{2}\left(\frac{1}{16}\right)[/tex]

To solve this expression:

[tex]$\log _{2}\left(\frac{1}{16}\right)[/tex]

Using log rule: [tex]\log _{a}\left(\frac{1}{x}\right)=-\log _{a}(x)[/tex]

         [tex]=-\log _{2}(16)[/tex]

16 can be written as [tex]2^4[/tex].

         [tex]=-\log _{2}\left(2^{4}\right)[/tex]

Using log rule: [tex]\log _{a}\left(x^{b}\right)=b \cdot \log _{a}(x)[/tex] so that [tex]\log _{2}\left(2^{4}\right)=4 \log _{2}(2)[/tex]

         [tex]=-4 \log _{2}(2)[/tex]

Using log rule: [tex]\log _{a}(a)=1[/tex] so that [tex]\log _{2}(2)=1[/tex]

         [tex]=-4 \cdot 1[/tex]

         = –4

[tex]$\log _{2}\left(\frac{1}{16}\right)=-4[/tex]