Respuesta :
Answer:
a) [tex]m=-\frac{45.1}{43.666}=-1.0328[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{100}{12}=9.167[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{101.4}{12}=8.45[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=8.45-(-1.0328*9.167)=17.918[/tex]
So the line would be given by:
[tex]y=-1.0328 x +17.918[/tex]
b) For this case we can replace in the lineal model the value of x =12 and we got:
[tex]y=-1.0328 *12 +17.918 =5.523[/tex]
c) For this case we can conclude that every increase in the age of the car decrease the selling price in about 1.0328*1000= 1032.8$ dollars from the original price.
Explanation:
a) Regression equation.
X represent the age an Y the Selling price
For this case we need to calculate the slope with the following formula:
[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]
Where:
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]
So we can find the sums like this:
[tex]\sum_{i=1}^n x_i =110[/tex]
[tex]\sum_{i=1}^n y_i =101.4[/tex]
[tex]\sum_{i=1}^n x^2_i =1052[/tex]
[tex]\sum_{i=1}^n y^2_i =982.32[/tex]
[tex]\sum_{i=1}^n x_i y_i =884.4[/tex]
With these we can find the sums:
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=1052-\frac{110^2}{12}=43.667[/tex]
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}=884.4-\frac{110*101.4}{12}=-45.1[/tex]
And the slope would be:
[tex]m=-\frac{45.1}{43.666}=-1.0328[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{100}{12}=9.167[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{101.4}{12}=8.45[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=8.45-(-1.0328*9.167)=17.918[/tex]
So the line would be given by:
[tex]y=-1.0328 x +17.918[/tex]
Part b
For this case we can replace in the lineal model the value of x =12 and we got:
[tex]y=-1.0328 *12 +17.918 =5.523[/tex]
Part c
For this case we can conclude that every increase in the age of the car decrease the selling price in about 1.0328*1000= 1032.8$ dollars from the original price.