A bond has a par value of $1,000, a time to maturity of 10 years, and a coupon rate of 8% with interest paid annually. If the current market price is $800, what will be the approximate capital gain of this bond over the next year if its yield to maturity remains unchanged

Respuesta :

Answer:

$ 201

Explanation:

Thinking process:

The par value = $ 1 000

            time    =  $ 10 years

 rate                =  8 %

                        = 0.08

The amount at a time T is given by the formula:

[tex]A = P (1 + \frac{r}{n})^{nt}[/tex]

for $ 1 000, the amount will be:

[tex]A = 1000(1 + \frac{0.08}{10})0.08^{10}\\ = 1000(1+0.008)^{0.8} \\ = 1 000(1.00639)\\ = 1 006[/tex]

The amount will be $ 1 006

for $ 8 00 it will be  =[tex]800 (1 + \frac{0.8}{10} )^{0.08*10} \\= 805[/tex]

the amount will be $ 805

therefore, the net gain will be $ 1 006 - $ 805

                                       = $ 201