Respuesta :
Answer:
[tex]a. 28.70\\b. 20.00\\c.20.73\\d.20.14\\e.21.70[/tex]
*All values are in thousandsHence September forecast is
Explanation:
a. let [tex]x[/tex] represent number of months and [tex]y[/tex] sales
[tex]\sum x=28 \ ,\sum y=141\ , \bar x=4 \ ,\bar y=20.14[/tex]
We then calculate squares, products and totals:
Squares of x: [tex]1,4,9,16,25,36,49[/tex] and [tex]\sum x^2=140[/tex]
Squares of [tex]y[/tex]: [tex]361,484,64,576,361,729,484[/tex] and [tex]\sum y^2=3059[/tex]
Products of xy: [tex]19,44,24,96,95,162,154[/tex] and [tex]\sum xy= 594[/tex]
Linear regression is given by the equation [tex]y=bx+c[/tex]
[tex]S_x_x=140-28^2/7=28[/tex]
[tex]S_x_y=594-(141\times28)/7=30[/tex]
[tex]b=30/28=1.07[/tex]
[tex]c=\frac{141}{7}=20.14[/tex]
Linear equation is now given as [tex]y=1.07x+20.14[/tex]
Hence September forecast is calculated as:
[tex]y=1.07(8)+20.14=28.70[/tex]
b. 5-month moving average:
[tex]MA_5=\frac{1}{5}(22+27+19+24+8)=20[/tex]
c.Exponential smoothing given smoothing constant of [tex]0.25[/tex]
Month forecast=[tex]F(Old)-0.25[Actual-F(Old)][/tex]
April=
[tex]17+0.25(22-17)=18.25\\May:18.25+0.25(8-18.25)=15.69\\June:15.69+0.25(24-15.69)=17.77\\July:17.77+0.25(19-17.77)=18.08\\Aug:18.08+0.25(27-18.08)=20.31\\Sep:20.31+0.25(22-20.31)=20.73[/tex]
20.73
d. Naive Approach
[tex]=(\bar x_7 \times 8)-\sum x_7)\\=20.14\times 8-141\\=20.14[/tex]
e. Weighted Average
[tex]=0.50*22+0.15*27+0.35*19\\=21.7[/tex]