Respuesta :
Answer and Step-by-step explanation:
a)
expected value for the difference in sample means=3.5-3.2=0.3
b)
standard deviation of the sampling distribution of the difference in sample means
=sqrt((0.5^2/40)+(0.8^2/40))
=0.1492
c)
z=(0.3-0)/0.1492
z=2.01
P(z>2.01)=0.0222
Answer:
a) [tex] E(X-Y) = E(X)-E(Y) = \mu_x -\mu_y = 3.5-3.2=0.3[/tex]
b) [tex] Var(\bar X -\bar Y) = \frac{\sigma^2_x}{n_x} +\frac{\sigma^2_y}{n_y}[/tex]
And replacing we got:
[tex] Var(\bar X -\bar Y) =\frac{0.5^2}{40} + \frac{0.8^2}{40} = 0.02225[/tex]
And the deviation would be:
[tex] sd(\bar X -\bar Y) = \sqrt{0.02225}= 0.149[/tex]
c) [tex] P(\bar X >\bar Y) [/tex]
And we can use the z score formula given by:
[tex] z = \frac{D-\mu_d}{\sigma_d}[/tex]
[tex] d = X-Y \sim N (\mu_d =0.3, sigma_d = 0.149)[/tex]
And replacing we got:
[tex] P(d >0) = P(z> \frac{\bar X- \bar Y -0}{\sigma_d}) =P(z> \frac{3.5-3.2}{0.149}) =P(z>2.103)[/tex]
And using the complement rule we got:
[tex] P(z>2.103) = 1-P(z<2,103) = 1-0.978 = 0.022[/tex]
Step-by-step explanation:
For this case we have the following info:
Freshmem
[tex] X \sim N(\mu= 3.5 , \sigma=0.5)[/tex]
Sophomores
[tex] Y \sim N(\mu= 3.2 , \sigma=0.8)[/tex]
We select a sample of 40 for both groups [tex]n_x =n_y =40[/tex]
Part a
The expected value for the difference is given by:
[tex] E(X-Y) = E(X)-E(Y) = \mu_x -\mu_y = 3.5-3.2=0.3[/tex]
Part b
We know that the sample mean follows this distribution:
[tex] \bar X \sim N(\mu , \frac{\sigma}{\sqrt{n}})[/tex]
And we want the distribution for [tex] \bar X-\bar Y[/tex]
And we need to find the variance with the following formula:
[tex] Var(\bar X -\bar Y) = \frac{\sigma^2_x}{n_x} +\frac{\sigma^2_y}{n_y}[/tex]
And replacing we got:
[tex] Var(\bar X -\bar Y) =\frac{0.5^2}{40} + \frac{0.8^2}{40} = 0.02225[/tex]
And the deviation would be:
[tex] sd(\bar X -\bar Y) = \sqrt{0.02225}= 0.149[/tex]
Part c
For this case we want this probability:
[tex] P(\bar X >\bar Y) [/tex]
And we can use the z score formula given by:
[tex] z = \frac{D-\mu_d}{\sigma_d}[/tex]
[tex] d = X-Y \sim N (\mu_d =0.3, sigma_d = 0.149)[/tex]
And replacing we got:
[tex] P(d >0) = P(z> \frac{\bar X- \bar Y -0}{\sigma_d}) =P(z> \frac{3.5-3.2}{0.149}) =P(z>2.103)[/tex]
And using the complement rule we got:
[tex] P(z>2.103) = 1-P(z<2,103) = 1-0.978 = 0.022[/tex]