Respuesta :
Answer:
a) gNP = 4.71 x 10^-14 m/s²
b) gNU = 1.06 x 10^-9 m/s²
c) gNU/gNP = 22505.3
Explanation:
The formula for calculating the gravitational field at a planet is given by Newton's Gravitational law. Since the force exerted by 1st planet on 2nd will be equal to weight of the second planet
F = W = mg = GMm/R^2
g = GM/R^2
where,
m = mass of other planet
g = gravitational field at the surface of planet
G = Universal Gravitational Constant = 6.67 x 10^-11 N.m²/kg²
M = Mass of the planet
R = Distance between planets
a)
gNP = (6.67 x 10^-11 N.m²/kg²)(1.4 x 10^22 kg)/(4.45 x 10^12 m )²
gNP = 4.71 x 10^-14 m/s²
b)
gNU = (6.67 x 10^-11 N.m²/kg²)(8.62 x 10^25 kg)/(2.32 x 10^12 m )²
gNU = 1.06 x 10^-9 m/s²
c)
gNU/gNP = (1.06 x 10^-9 m/s²)/(4.71 x 10^-14 m/s²)
gNU/gNP = 22505.3
Gravitational force on Neptune from Pluto and Uranus is [tex]\bold { 1.06 x 10^-9\ m/s^2}[/tex] and [tex]\bold {4.71 x 10^{-14} m/s^2}[/tex]respectively.
From Newton's Gravitational law.
[tex]\bold {F=G{\dfrac{m_1m_2}{r^2}}}[/tex]
Where,
m1 = mass of other first planet
m2 = Mass of the second planet
g = gravitational field at the surface of planet = ?
G = Universal Gravitational Constant = 6.67 x 10^-11 N.m²/kg²
R = Distance between planets
a)
[tex]\bold {gNP = (6.67 x 10^-11 N.m^2/kg^2)\dfrac {(1.4 x 10^22 kg)}{(4.45 x 10^12 m )^2}}\\\\\bold {gNP = 4.71 x 10^{-14 }\m/s^2}[/tex]
b)
[tex]\bold {gNU = (6.67 x 10^-11\ N.m^2/kg^2)\dfrac {(8.62 x 10^{25}\ kg)}{(2.32 x 10^{12}\ m )^2}}\\\\\bold {gNU = 1.06 x 10^-9\m/s^2}[/tex]
c)
[tex]\bold {gNU/gNP = \dfrac {(1.06 x 10^-9 m/s^2}{(4.71 x 10^{-14} m/s^2)}}[/tex]
gNU/gNP = 22505.3
To know more about Newton's Gravitational law.
https://brainly.com/question/9373839