Initially, there are 40 grams of A and 50 grams of B, and for each gram of B, 2 grams of A is used. It is observed that 15 grams of C is formed in 8 minutes. How much (in grams) is formed in 16 minutes? (Round your answer to one decimal place.)

Respuesta :

Answer:

[tex]X(16)=25.71grams[/tex]

Step-by-step explanation:

let [tex]X(t)[/tex] denote grams of [tex]C[/tex] formed in  [tex]t[/tex] mins.

For [tex]X grams[/tex] of [tex]C[/tex] we have:

[tex]\frac{2}{3}Xg[/tex] of A and [tex]\frac{1}{3}Xg[/tex] of B

Amounts of A,B remaining at any given time is expressed as:

[tex]40-\frac{2}{3}Xg[/tex] of A and  [tex]50-\frac{1}{3}Xg[/tex]  of B

Rate at which C is formed satisfies:

[tex]\frac{dX}{dt} \infty(40-\frac{2}{3}X)(50-\frac{1}{3}X)->\frac{dX}{dt}=k(90-X)\\\therefore \frac{dX}{(90-X)^2}=kdt->\int{\frac{dX}{(90-X)^2}} \, =\int {k} \, dt \\\therefore \frac{1}{90-X}=kt+c->90-X=\frac{1}{kt+c}\\\\X(t)=90-\frac{1}{kt+c}[/tex]

Apply the initial condition,[tex]X(0)=0[/tex] ,to the expression above

[tex]0=90-\frac{1}{c} \ \ ->c=\frac{1}{90}\\\therefore\\X(t)=90-\frac{1}{kt+\frac{1}{90}} \ \ ->X(t)=90-\frac{90}{90kt+c}[/tex]

Now at [tex]X(8)=15[/tex]:

[tex]15=90-\frac{90}{90\times 8k+1} \ ->75=\frac{90}{720k+1}\\k=0.0002778[/tex]

Substitute  in X(t) to get

[tex]X(t)=90-\frac{90}{0.0002778t\times 90+1}\\X(t)=90-\frac{90}{0.25t+1}\\But \ t=16\\\therefore X(t)=90-\frac{90}{0.025\times16+1}\\X(t)=25.71[/tex]