Helium is pumped into a spherical balloon at a rate of 3 cubic feet per second. How fast is the radius increasing after 2 minutes? Note: The volume of a sphere is given by V=43πr3V=43πr3. Rate of change of radius (in feet per second) =

Respuesta :

Answer:

The rate of change of radius is 0.0530 ft/sec.

Step-by-step explanation:

Given : Helium is pumped into a spherical balloon at a rate of 3 cubic feet per second.

To find : How fast is the radius increasing after 2 minutes?

Solution :

The volume of the sphere is [tex]V=\frac{4}{3}\pi r^3[/tex]

Differentiating w.r.t. r,

[tex]\frac{dV}{dr}=4\pi r^2[/tex]

We have given, Helium is pumped into a spherical balloon at a rate of 3 cubic feet per second.

i.e. [tex]\frac{dV}{dt}=3[/tex]

Integrate w.r.t. t,

[tex]V=3t+C[/tex]

Assuming V=0 when  t=0 then C=0

So, [tex]\frac{4}{3}\pi r^3=3t[/tex]

[tex]r^3=\frac{t}{4\pi}[/tex]

[tex]r=\sqrt[3]{\frac{t}{4\pi}}[/tex]

Now, we apply chain rule

i.e.  [tex]\frac{dV}{dt}=\frac{dV}{dr}\cdot \frac{dr}{dt}[/tex]

[tex]3=4\pi(\frac{t}{4\pi})^{\frac{2}{3}}\cdot \frac{dr}{dt}[/tex]

The radius increasing after 2 minutes i.e. at [tex]t=2\times 60=120[/tex]

[tex]3=4\pi(\frac{120}{4\pi})^{\frac{2}{3}})\cdot \frac{dr}{dt}[/tex]

[tex]3=56.56\cdot \frac{dr}{dt}[/tex]

[tex]\frac{dr}{dt}=\frac{3}{56.56}[/tex]

[tex]\frac{dr}{dt}=0.0530[/tex]

Therefore, the rate of change of radius is 0.0530 ft/sec.