If a publisher of nontechnical books takes great pains to ensure that its books are free of typos, so that the probability of any given page containing at least one such error is .005 & errors are independent from page to page. What is the probability that:
(a) One of its 400-page novels will contain exactly 1 page with errors? (b) At most three pages are with errors.

Respuesta :

Answer:

(a) 0.2707

(b) 0.8576

Step-by-step explanation:

Ver imagen AmmarAwais

The probability of at most three pages with errors is 0.4060021.

Given to us:

X follows a binomial distribution with,

Number of pages in the novel n = 400

Probability of error p = 0.005

Probability of page without error q = 01 - 0.005 = 0.995

The Probability Mass Function(PMF) for X is:

[tex]P(x)=\dfrac{n!}{(n-x)!x!}p^xq^{(n-x)\ =\ (\frac{n}{x} )p^xq^{(n-x)}[/tex]

a.)  One of the 400-pages novels will contain exactly 1 page with errors

[tex]\begin{aligned}P(x=1)&=\ (\dfrac{n}{x} )p^xq^{(n-x)}\\\\&=(\dfrac{400}{1} )(0.005)^1(0.995)^{(400-1)}\\\\&=400\times 0.005 \times 0.995^{399}\\\\&= 0.2706694\end{aligned}[/tex]

b.)  At most three pages are with errors

[tex]P(x\leq 3)= P(x=0)+P(x=1)P(x=2)+P(x=3)[/tex]

[tex]\begin{aligned}P(x=0)&=\ (\dfrac{n}{x} )p^xq^{(n-x)}\\\\&=(\dfrac{400}{0} )(0.005)^0(0.995)^{(400-0)}\\\\&=1\times 1 \times 0.995^{400}\\\\&= 0.13465\end{aligned}[/tex]

[tex]\begin{aligned}P(x=2)&=\ (\dfrac{n}{x} )p^xq^{(n-x)}\\\\&=(\dfrac{400}{2} )(0.005)^2(0.995)^{(400-2)}\\\\&=200\times 0.000025 \times 0.995^{398}\\\\&= 0.00068\end{aligned}[/tex]

[tex]\begin{aligned}P(x=3)&=\ (\dfrac{n}{x} )p^xq^{(n-x)}\\\\&=(\dfrac{400}{3} )(0.005)^3(0.995)^{(400-3)}\\\\&= 0.00000227\end{aligned}[/tex]

Therefore, the probability of at most three pages with errors is

[tex]\begin{aligned}P(x\leq 3)&= P(x=0)+P(x=1)P(x=2)+P(x=3)\\&=0.13465+0.2706694+0.00068+0.0000027\\&=0.4060021\end{aligned}[/tex]

To know more visit:

https://brainly.in/question/1640230