Answer: The concentration equilibrium constant for the given reaction is 0.14
Explanation:
The molarity of solution is calculated by using the equation:
[tex]\text{Molarity}=\frac{\text{Moles of solute}}{\text{Volume of the solution}}[/tex]
Initial moles of ammonia gas = 23. moles
Volume of the container = 75.0 L
[tex]\text{Initial molarity of ammonia gas}=\frac{23}{75}=0.3067M[/tex]
Equilibrium moles of hydrogen gas = 21. moles
Volume of the container = 75.0 L
[tex]\text{Equilibrium molarity of hydrogen gas}=\frac{21}{75}=0.28M[/tex]
The given chemical equation follows:
[tex]2NH_3(g)\rightleftharpoons 3H_2(g)+N_2(g)[/tex]
Initial: 0.3067
At eqllm: 0.3067-2x 3x x
Evaluating the value of 'x'
[tex]\Rightarrow 3x=0.28\\\\x=\frac{0.28}{3}=0.0933[/tex]
So, equilibrium concentration of ammonia gas = [tex](0.3067-2x)=[0.3067-(2\times 0.0933)=0.1201M[/tex]
Equilibrium concentration of nitrogen gas = x = 0.0933 M
The expression of [tex]K_c[/tex] for above equation follows:
[tex]K_c=\frac{[H_2]^3[N_2]}{[NH_3]^2}[/tex]
Putting values in above equation, we get:
[tex]K_c=\frac{(0.28)^3\times 0.0933}{(0.1201)^2}\\\\K_c=0.14[/tex]
Hence, the concentration equilibrium constant for the given reaction is 0.14