Respuesta :
Answer:
a) [tex]k = 300\,\frac{N}{m}[/tex], b) [tex]\Delta U_{k} = 13.5\,J[/tex], c) [tex]\Delta U_{k} = 6\,J[/tex], d) [tex]\Delta U_{k} = 4.5\,J[/tex]
Step-by-step explanation:
a) The spring constant is calculated by using this expression:
[tex]k = \frac{F}{x}[/tex]
[tex]k = \frac{30\,N}{0.1\,m}[/tex]
[tex]k = 300\,\frac{N}{m}[/tex]
b) The work needed to compress the spring from its initial position is:
[tex]\Delta U_{k} = \frac{1}{2}\cdot k \cdot (x_{f}^{2}-x_{o}^{2})[/tex]
[tex]\Delta U_{k} = \frac{1}{2}\cdot (300\,\frac{N}{m} )\cdot [(-0.3\,m)^{2}-(0\,m)^{2}][/tex]
[tex]\Delta U_{k} = 13.5\,J[/tex]
c) The work needed to stretch the spring is:
[tex]\Delta U_{k} = \frac{1}{2}\cdot (300\,\frac{N}{m} )\cdot [(0.2\,m)^{2}-(0\,m)^{2}][/tex]
[tex]\Delta U_{k} = 6\,J[/tex]
d) The work need to stretch the spring is:
[tex]\Delta U_{k} = \frac{1}{2}\cdot (300\,\frac{N}{m} )\cdot [(0.2\,m)^{2}-(0.1\,m)^{2}][/tex]
[tex]\Delta U_{k} = 4.5\,J[/tex]
Step-by-step explanation:
Below is an attachment containing the solution
