Answer:
The value of E(Y/X) is 2.
Step-by-step explanation:
As the complete question is not given, thus the complete question is found online and is attached herewith.
So the joint density function is given as
[tex]f(x,y)=\left \{ {{\dfrac{x}{8}e^{-\dfrac{x+y}{2}} \,\,\,\,0 \leq x,0\leq y \atop {0}} \right.[/tex]
So the marginal function for X is given as
[tex]f_x=\int\limits^{\infty}_0 {f(x,y)} \, dy\\f_x=\int\limits^{\infty}_0 \dfrac{x}{8}e^{-\frac{x+y}{2} }dy\\f_x=\int\limits^{\infty}_0 \dfrac{x}{8}e^{-\frac{x}{2}}e^{-\frac{y}{2} }dy\\f_x= \dfrac{x}{8}e^{-\frac{x}{2}}\int\limits^{\infty}_0e^{-\frac{y}{2} }dy\\f_x= \dfrac{x}{4}e^{-\frac{x}{2}}[/tex]
Now
[tex]f(Y/X)=\dfrac{f(X,Y)}{f(X)}\\f(Y/X)=\dfrac{\dfrac{x}{8}e^{-\frac{x+y}{2} }}{\dfrac{x}{4}e^{-\frac{x}{2}}}\\f(Y/X)=\dfrac{1}{2}e^{-\frac{y}{2} }[/tex]
Now the value of E(Y/X) is given as
[tex]E(Y/X)=\int\limits^{\infty}_0 {yf_{Y/X}} \, dy \\E(Y/X)=\int\limits^{\infty}_0 {y\dfrac{1}{2}e^{-\frac{y}{2} } }\, dy\\E(Y/X)=\dfrac{1}{2}\dfrac{\sqrt{2}}{(\dfrac{1}{2})^2}=2[/tex]
So the value of E(Y/X) is 2.