What is the wavelength of an electron with a mass of 9.109×10−31 kg and a velocity of 3.43×107 ms? Use 6.626×10−34kg m2s for Planck's constant. Your answer should include three significant figures.

Respuesta :

Answer: The wavelength of an electron is [tex]2.121\times 10^{-11}m[/tex]

Explanation:

To calculate the wavelength of a particle, we use the equation given by De-Broglie's wavelength, which is:

[tex]\lambda=\frac{h}{mv}[/tex]

where,

[tex]\lambda[/tex] = De-Broglie's wavelength = ?

h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]

m = mass of electron = [tex]9.109\times 10^{-31}kg[/tex]

v = velocity of electron = [tex]3.43\times 10^{7}m/s[/tex]

Putting values in above equation, we get:

[tex]\lambda=\frac{6.626\times 10^{-34}Js}{(9.109\times 10^{-31}kg)\times (3.43\times 10^{7}m/s)}[/tex]

[tex]\lambda=2.121\times 10^{-11}m[/tex]

Hence, the wavelength of an electron is [tex]2.121\times 10^{-11}m[/tex]