Answer: The wavelength of an electron is [tex]2.121\times 10^{-11}m[/tex]
Explanation:
To calculate the wavelength of a particle, we use the equation given by De-Broglie's wavelength, which is:
[tex]\lambda=\frac{h}{mv}[/tex]
where,
[tex]\lambda[/tex] = De-Broglie's wavelength = ?
h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]
m = mass of electron = [tex]9.109\times 10^{-31}kg[/tex]
v = velocity of electron = [tex]3.43\times 10^{7}m/s[/tex]
Putting values in above equation, we get:
[tex]\lambda=\frac{6.626\times 10^{-34}Js}{(9.109\times 10^{-31}kg)\times (3.43\times 10^{7}m/s)}[/tex]
[tex]\lambda=2.121\times 10^{-11}m[/tex]
Hence, the wavelength of an electron is [tex]2.121\times 10^{-11}m[/tex]