Use the radius-luminosity-temperature relation to calculate the radius of a red supergiant with temperature 3000 K and total luminosity 10000 times that of the Sun.

Respuesta :

Answer:

The radius of the red supergiant is [tex]2.58x10^{11}m[/tex].

Explanation:

The radiant power establishes how much energy an observer or a detector can get from a luminous source per unit time and per unit surface area.

[tex]R_{p} = \frac{L}{4\pi r^2}[/tex]  (1)

Where [tex]R_{p}[/tex] is the radiant power received from the source, L its intrinsic luminosity and r is the distance.

The Stefan-Boltzmann law is defined as:

[tex]R_{p} = \sigma \cdot T^{4}[/tex]  (2)

Where [tex]R_{p}[/tex] is the radiant power, [tex]\sigma[/tex] is the Stefan-Boltzmann constant and T the temperature.

Then, equation 2 can be replaced in equation 1

[tex]\sigma \cdot T^{4} = \frac{L}{4\pi r^2}[/tex] (3)

Notice that L is the energy emitted per second by the source.

Therefore, r can be isolated from equation 3.

[tex] r^2 = \frac{L}{4\pi \sigma\cdot T^{4}}[/tex]

[tex] r = \sqrt{\frac{L}{4\pi \sigma\cdot T^{4}}}[/tex]  (4)

The luminosity of the Sun can be estimated isolating L from equation 3.

[tex]L = (4\pi r^2)(\sigma \cdot T^{4}) [/tex]

but, [tex]r = 696.34x10^{6}m[/tex] and [tex]T = 5778K[/tex] for the Sun.  

[tex]L = 4\pi (696.34x10^{6}m)^2(5.67x10^{-8} W/m^{2} K^{4} )(5778K)^{4}) [/tex]

[tex]L = 3.85x10^{26} W[/tex]

The following expression can be used to find the luminosity of the star:

[tex]\frac{L_{star}}{L_{sun}} = 10000[/tex]

[tex]{L_{star}} = (3.85x10^{26} W)(10000)[/tex]

[tex]{L_{star}} = 3.85x10^{30}W[/tex]

Finally, equation 4 can be used.

[tex] r = \sqrt{\frac{3.85x10^{30}W}{4\pi (5.67x10^{-8} W/m^{2} K^{4})(3000K)^{4}}}[/tex]

[tex]r = 2.58x10^{11}m[/tex]

Hence, the radius of the red supergiant is [tex]2.58x10^{11}m[/tex].