According to a theory in​ genetics, if tall and colorful plants are crossed with short and colorless​ plants, four types of plants will​ result: tall and​ colorful, tall and​ colorless, short and​ colorful, and short and​ colorless, with corresponding probabilities of nine sixteenths ​, three sixteenths ​, three sixteenths ​, and one sixteenth . In a multinomial​ experiment, if 10 plants are​ selected, find the probability that 3 will be tall and​ colorful, 3 will be tall and​ colorless, 3 will be short and​ colorful, and 1 will be short and colorless.

Respuesta :

Answer:

The probability that 3 will be tall and​ colorful, 3 will be tall and​ colorless, 3 will be short and​ colorful, and 1 will be short and colorless out of 10 plants is 0.0081.

Step-by-step explanation:

As the values of different probabilities are given as

X1=tall and colorful, P(X1)=9/16

X2=tall and colorless, P(X2)=3/16

X3=short and colorful, P(X3)=3/16

X4=short and colorless, P(X4)=1/16

Now the total number of plants is 10 and the X1=3, X2=3,X3=3,X4=1

so

[tex]P(X1=n_1,X2=n_2,X3=n_3,X4=n_4)=\dfrac{n!}{n_1!n_2!n_3!n_4!}p_1^{n_1}p_2^{n_2}p_3^{n_3}p_4^{n_4}\\=\dfrac{10!}{3!3!3!1!}\left(\dfrac{9}{16}\right)^{3}\left(\dfrac{3}{16}\right)^{3}\left(\dfrac{3}{16}\right)^{3}\left(\dfrac{1}{16}\right)^{1}\\=\dfrac{279006525}{2^{33}\cdot \:4}\\=0.0081[/tex]

So the probability that 3 will be tall and​ colorful, 3 will be tall and​ colorless, 3 will be short and​ colorful, and 1 will be short and colorless out of 10 plants is 0.0081.

Probabilities are used to determine the chances of events.

The required probability is 0.008121

To determine the required probability, we make use of the following representations

  • a : tall and colorful
  • b : tall and colorless
  • c : short and colorful
  • d : short and colorless

So, we have:

  • [tex]P(a)=\frac{9}{16}[/tex].
  • [tex]P(b)=\frac{3}{16}[/tex].
  • [tex]P(c)=\frac{3}{16}[/tex].
  • [tex]P(d)=\frac{1}{16}[/tex].
  • Sample size: n = 10

The probability that 3 will be tall and​ colorful, 3 will be tall and​ colorless, 3 will be short and​ colorful, and 1 will be short and colorless is then calculated as:

[tex]P(A = a,B=b,C =c,D=d) = \frac{n!}{a!b!c!d!} \times p_1^a p_2^bp_3^cp_4^d}[/tex]

This gives

[tex]P(a = 3,b=3,c =3,d=1) = \frac{10!}{3!3!3!1!} \times (\frac{9}{16})^3 \times (\frac{3}{16})^3 \times (\frac{3}{16})^3 \times (\frac{1}{16})^1[/tex]

Evaluate the factorials

[tex]P(a = 3,b=3,c =3,d=1) = \frac{3628800}{6 \times 6 \times 6 \times 1} \times (\frac{9}{16})^3 \times (\frac{3}{16})^3 \times (\frac{3}{16})^3 \times (\frac{1}{16})^1[/tex]

[tex]P(a = 3,b=3,c =3,d=1) = 16800 \times (\frac{9}{16})^3 \times (\frac{3}{16})^3 \times (\frac{3}{16})^3 \times (\frac{1}{16})^1[/tex]

Evaluate the exponents

[tex]P(a = 3,b=3,c =3,d=1) = 16800 \times 0.177979 \times 0.006592 \times 0.006592 \times 0.0625[/tex]

[tex]P(a = 3,b=3,c =3,d=1) = 0.008121[/tex]

Hence, the probability is 0.008121

Read more about probabilities at:

https://brainly.com/question/6659866