Respuesta :
Answer:
The probability that 3 will be tall and colorful, 3 will be tall and colorless, 3 will be short and colorful, and 1 will be short and colorless out of 10 plants is 0.0081.
Step-by-step explanation:
As the values of different probabilities are given as
X1=tall and colorful, P(X1)=9/16
X2=tall and colorless, P(X2)=3/16
X3=short and colorful, P(X3)=3/16
X4=short and colorless, P(X4)=1/16
Now the total number of plants is 10 and the X1=3, X2=3,X3=3,X4=1
so
[tex]P(X1=n_1,X2=n_2,X3=n_3,X4=n_4)=\dfrac{n!}{n_1!n_2!n_3!n_4!}p_1^{n_1}p_2^{n_2}p_3^{n_3}p_4^{n_4}\\=\dfrac{10!}{3!3!3!1!}\left(\dfrac{9}{16}\right)^{3}\left(\dfrac{3}{16}\right)^{3}\left(\dfrac{3}{16}\right)^{3}\left(\dfrac{1}{16}\right)^{1}\\=\dfrac{279006525}{2^{33}\cdot \:4}\\=0.0081[/tex]
So the probability that 3 will be tall and colorful, 3 will be tall and colorless, 3 will be short and colorful, and 1 will be short and colorless out of 10 plants is 0.0081.
Probabilities are used to determine the chances of events.
The required probability is 0.008121
To determine the required probability, we make use of the following representations
- a : tall and colorful
- b : tall and colorless
- c : short and colorful
- d : short and colorless
So, we have:
- [tex]P(a)=\frac{9}{16}[/tex].
- [tex]P(b)=\frac{3}{16}[/tex].
- [tex]P(c)=\frac{3}{16}[/tex].
- [tex]P(d)=\frac{1}{16}[/tex].
- Sample size: n = 10
The probability that 3 will be tall and colorful, 3 will be tall and colorless, 3 will be short and colorful, and 1 will be short and colorless is then calculated as:
[tex]P(A = a,B=b,C =c,D=d) = \frac{n!}{a!b!c!d!} \times p_1^a p_2^bp_3^cp_4^d}[/tex]
This gives
[tex]P(a = 3,b=3,c =3,d=1) = \frac{10!}{3!3!3!1!} \times (\frac{9}{16})^3 \times (\frac{3}{16})^3 \times (\frac{3}{16})^3 \times (\frac{1}{16})^1[/tex]
Evaluate the factorials
[tex]P(a = 3,b=3,c =3,d=1) = \frac{3628800}{6 \times 6 \times 6 \times 1} \times (\frac{9}{16})^3 \times (\frac{3}{16})^3 \times (\frac{3}{16})^3 \times (\frac{1}{16})^1[/tex]
[tex]P(a = 3,b=3,c =3,d=1) = 16800 \times (\frac{9}{16})^3 \times (\frac{3}{16})^3 \times (\frac{3}{16})^3 \times (\frac{1}{16})^1[/tex]
Evaluate the exponents
[tex]P(a = 3,b=3,c =3,d=1) = 16800 \times 0.177979 \times 0.006592 \times 0.006592 \times 0.0625[/tex]
[tex]P(a = 3,b=3,c =3,d=1) = 0.008121[/tex]
Hence, the probability is 0.008121
Read more about probabilities at:
https://brainly.com/question/6659866