Answer:
V = 0.48 [V]
Explanation:
We can calculate the area of the cable using the following expression:
[tex]A=\pi *(d/2)^{2} \\A=\pi *\frac{d^{2} }{4} \\A=\pi *(8.9*10^{-3} )/4\\A= 6.22*10^{-5}[m^{2}][/tex]
Now we can calculate the total resistance using the following equation:
[tex]A=\frac{de*L}{R}\\ where:\\A = area [m^2]\\de = resistivity = 1.68*10^{-8}[ohm*m]\\ L = length = 30 [m]\\R = resistance [ohm][/tex]
[tex]R=\frac{de*L}{A}\\ R = \frac{1.68*10^{-8}*30 }{6.22*10^{-5} }\\ R = 8.102*10^{-3} [ohm][/tex]
Using the ohm law we know that the voltage is equal to the product of the current by the resistance, in this way we can calculate the voltage.
V = I * R
V = 0.059 * 0.008102
V = 0.48*10^(-3) [volt] * (10^3)
V = 0.48 [V]