Answer: The mass of [tex]D_2O[/tex] needed is 1.36 grams
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] .....(1)
For [tex]ND_3[/tex] :
Given mass of [tex]ND_3[/tex] = 455.0 mg = 0.455 g (Conversion factor: 1 g = 1000 mg)
Molar mass of [tex]ND_3[/tex] = 20.049 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of }ND_3=\frac{0.455g}{20.049g/mol}=0.0227mol[/tex]
For the given chemical equation:
[tex]Li_3N(s)+3D_2O(l)\rightarrow ND_3(g)+3LiOD(aq.)[/tex]
By Stoichiometry of the reaction:
1 mole of [tex]ND_3[/tex] is produced from 3 moles of [tex]D_2O[/tex]
So, 0.0227 moles of [tex]ND_3[/tex] will be produced from = [tex]\frac{3}{1}\times 0.0227=0.0681mol\text{ of }D_2O[/tex]
Now, calculating the mass of [tex]D_2O[/tex] from equation 1, we get:
Molar mass of [tex]D_2O[/tex] = 20.027 g/mol
Moles of [tex]D_2O[/tex] = 0.0681 moles
Putting values in equation 1, we get:
[tex]0.0681mol=\frac{\text{Mass of }D_2O}{20.027g/mol}\\\\\text{Mass of }D_2O}=(0.0681mol\times 20.027g/mol)=1.36g[/tex]
Hence, the mass of [tex]D_2O[/tex] needed is 1.36 grams