Recall Planck's constant equals 6.63 × 10−34 J·s and the speed of light is 3.00 × 108 m/s. Calculate the wavelength (in nm) of a photon emitted by a hydrogen atom when its electron drops from the n = 5 state to the n = 3 state.

Respuesta :

Answer: The wavelength of light is 1281.9 nm

Explanation:

To calculate the wavelength of light, we use Rydberg's Equation:

[tex]\frac{1}{\lambda}=R_H\left(\frac{1}{n_f^2}-\frac{1}{n_i^2} \right )[/tex]

Where,

[tex]\lambda[/tex] = Wavelength of radiation

[tex]R_H[/tex] = Rydberg's Constant  = [tex]1.097\times 10^7m^{-1}[/tex]

[tex]n_f[/tex] = Upper energy level = 3

[tex]n_i[/tex]= Lower energy level = 5

Putting the values in above equation, we get:

[tex]\frac{1}{\lambda }=1.097\times 10^7m^{-1}\left(\frac{1}{3^2}-\frac{1}{5^2} \right )\\\\\lambda =\frac{1}{780089m^{-1}}=1.28\times 10^{-6}m[/tex]

Converting this into nanometers, we use the conversion factor:

[tex]1m=10^9nm[/tex]

So, [tex]1.2819\times 10^{-6}m\times (\frac{10^9nm}{1m})=1281.9nm[/tex]

Hence, the wavelength of light is 1281.9 nm