How many times must we toss a coin to ensure that a 0.95-confidence interval for the probability of heads on a single toss has length less than 0.1, 0.05, and 0 .01, respectively

Respuesta :

Answer:

(1) 97

(2) 385

(3) 9604

Step-by-step explanation:

The (1 - α) % confidence interval for population proportion is:

[tex]CI=\hat p\pm z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

The margin of error in this interval is:

[tex]MOE= z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

The formula to compute the sample size is:

[tex]\\n=\frac{z_{\alpha/2}^{2}\times \hat p(1-\hat p)}{MOE^{2}}[/tex]

(1)

Given:

[tex]\hat p = 0.50\\MOE=0.1\\z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96[/tex]

*Use the z-table for the critical value.

Compute the value of n as follows:

[tex]\\n=\frac{z_{\alpha/2}^{2}\times \hat p(1-\hat p)}{MOE^{2}}\\=\frac{1.96^{2}\times0.50\times(1-0.50)}{0.1^{2}}\\=96.04\\\approx97[/tex]

Thus, the minimum sample size required is 97.

(2)

Given:

[tex]\hat p = 0.50\\MOE=0.05\\z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96[/tex]

*Use the z-table for the critical value.

Compute the value of n as follows:

[tex]\\n=\frac{z_{\alpha/2}^{2}\times \hat p(1-\hat p)}{MOE^{2}}\\=\frac{1.96^{2}\times0.50\times(1-0.50)}{0.05^{2}}\\=384.16\\\approx385[/tex]

Thus, the minimum sample size required is 385.

(3)

Given:

[tex]\hat p = 0.50\\MOE=0.01\\z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96[/tex]

*Use the z-table for the critical value.

Compute the value of n as follows:

[tex]\\n=\frac{z_{\alpha/2}^{2}\times \hat p(1-\hat p)}{MOE^{2}}\\=\frac{1.96^{2}\times0.50\times(1-0.50)}{0.01^{2}}\\=9604[/tex]

Thus, the minimum sample size required is 9604.