Answer:
4(3b² + 4)(3b² - 4)
Step-by-step explanation:
Given
36[tex]b^{4}[/tex] - 64 ← factor out 4 from each term
= 4(9[tex]b^{4}[/tex] - 16) ← factor as a difference of squares
a² - b² = (a + b)(a - b), thus
9[tex]b^{4}[/tex] - 16
= (3b²)² - 4²
= (3b² + 4)(3b² - 4)
Hence
36[tex]b^{4}[/tex] - 64
= 4(3b² + 4)(3b² - 4) ← in factored form