Answer: The value of [tex]K_c[/tex] for the net reaction is [tex]2.69\times 10^{5}[/tex]
Explanation:
The given chemical equations follows:
Equation 1: [tex]PCl_5(g)\xrightarrow[]{K_1} \frac{1}{4}P_4(g)+\frac{5}{2}Cl_2(g)[/tex]
Equation 2: [tex]\frac{1}{4}P_4(g)+\frac{3}{2}Cl_2(g)\xrightarrow[]{K_2} PCl_5(g)[/tex]
The net equation follows:
[tex]PCl_5(g)\xrightarrow[]{K_c} PCl_3(g)+Cl_2(g)[/tex]
As, the net reaction is the result of the addition of two above equations. So, the equilibrium constant for the net reaction will be the multiplication of two above equations.
The value of equilibrium constant for net reaction is:
[tex]K_c=K_1\times K_2[/tex]
We are given:
[tex]K_1=1.18\times 10^{-21}[/tex]
[tex]K_2=2.28\times 10^{26}[/tex]
Putting values in above equation, we get:
[tex]K_c=1.18\times 10^{-21}\times 2.28\times 10^{26}=2.69\times 10^{5}[/tex]
Hence, the value of [tex]K_c[/tex] for the net reaction is [tex]2.69\times 10^{5}[/tex]