Respuesta :
Answer:
Part(a): The angular acceleration is [tex]5.63~rad~s^{-2}[/tex].
Part(b): The angular displacement is [tex]2629~rad[/tex].
Explanation:
Part(a):
If [tex]\omega_{1},~\omega_{2}~and~\alpha[/tex] be the initial angular speed, final angular speed and angular acceleration of the centrifuge respectively, then from rotational kinematic equation, we can write
[tex]\alpha = \dfrac{\omega_{2} - \omega_{1}}{t}......................................................(I)[/tex]
where '[tex]t[/tex]' is the time taken by the centrifuge to increase its angular speed.
Given, [tex]\omega_{i} = 250~rad~s^{-1}[/tex], [tex]\omega_{f} = 750~rad~s^{-1}[/tex] and [tex]t = 9.5~s[/tex]. From equation ([tex]I[/tex]), the angular acceleration is given by
[tex]\alpha = \dfrac{750 - 250}{9.5}~rad~s^{-2} = 5.63~rad~s^{-2}[/tex]
Part(b):
Also the angular displacement ([tex]\Delta \theta[/tex]) can be written as
[tex]&&\Delta \theta = \omega_{1}~t + \dfrac{1}{2}\alpha~t^{2}\\&or,& \Delta \theta = (250 \times 9.5 + \dfrac{1}{2} \times 5.63 \times 9.5^{2})~rad = 2629~rad[/tex]
This question can be solved by using the equations of motion in angular form.
A) Angular acceleration of the centrifuge is "52.63 rad/s²".
B) Angular Displacement is "4749.9 rad".
A)
To find the angular acceleration we will use the first equation of motion:
[tex]\omega_f=\omega_i+\alpha t[/tex]
where,
[tex]\alpha[/tex] = angular acceleration = ?
t = time interval = 9.5 s
[tex]\omega_f[/tex] = final angular sped = 750 rad/s
[tex]\omega_i[/tex] = initial angular speed = 250 rad/s
Therefore,
[tex]750\ rad/s = 250\ rad/s + \alpha(9.5\ s)\\\\\alpha = \frac{750\ rad/s - 250\ rad/s}{9.5\ s}[/tex]
α = 52.63 rad/s²
B)
To find angular displacement we will use the second equation of motion:
[tex]\theta = \omega_i t + \frac{1}{2}\alphat^2\\\\\theta = (250\ rad/s)(9.5\ s)+\frac{1}{2}(52.63\ rad/s^2)(9.5\ s)^2\\\\\theta = 2375\ rad + 2374.9\ rad[/tex]
θ = 4749.9 rad
Learn more about the angular motion here:
https://brainly.com/question/14979994?referrer=searchResults
The attached picture shows the angular equations of motion.
