Make a substitution to express the integrand as a rational function and then evaluate the integral. (Use C for the constant of integration.)

∫ 2e^2x/ (e^2x +16e^x +63). dx

Respuesta :

Answer:

[tex]I = - 7 \cdot \ln|e^{x}+7| + 9 \cdot \ln|e^{x}+9| + C[/tex]

Step-by-step explanation:

Let consider the following algebraical substitution:

[tex]u = e^{x}[/tex]

[tex]du = e^{x} dx[/tex]

The integral is re-arranged to this form:

[tex]I = 2 \cdot \int\ {\frac{u\ du}{u^{2}+16\cdot u + 63} } \, dx[/tex]

After doing some algebraical manipulation, the rational form of this integral is:

[tex]I = -\int {\frac{7}{u + 7} } \, dx + \int {\frac{9}{u + 9} } \, dx \\[/tex]

The solution of this integral is:

[tex]I = - 7 \cdot \ln|u+7| + 9 \cdot \ln|u+9| + C[/tex]

[tex]I = - 7 \cdot \ln|e^{x}+7| + 9 \cdot \ln|e^{x}+9| + C[/tex]