Find the absolute maximum and minimum of the function on the given domain. f (x comma y )equals 8 x squared plus 7 y squared on the closed triangular plate bounded by the lines x equals 0 comma y equals 0 comma y plus 2 x equals 2 in the first quadrant

Respuesta :

Answer:

the maximum value is 7

The minimum value is 0

Step-by-step explanation:

Step One : Interpret the question

       The above question can be written like

The Equation

            [tex]f(x,y) = 8x^2 +7y^2[/tex]

The diagram of the triangular plate and the bounded lines is shown on the first uploaded image

          From the diagram  [tex]f(0,0) = 8(0)^2 +7(0)^2 =0[/tex]

                                          [tex]f(1,0) =8(1)^2 + 7(0)^2 = 8[/tex]

                                          [tex]f(0,1) =8(0)^2 + 7(1)^2 = 7[/tex]

Partial differentiation of the equation w.r.x

                           [tex]A =\frac{\delta f}{\delta x } = 16x[/tex]

 Partial differentiation of the equation w.r.y

                          [tex]B =\frac{\delta f}{\delta y } = 14y[/tex]            

Looking at the diagram the maximum value is 7 i.e  at (x , y) = (0,1)

The minimum value is 0 i.e  (x , y) = (0,0)

Ver imagen okpalawalter8